
Abstract. For nonlinear systems described by ordinary di¤erential equations, the paper studies
W -control sets which are de�ned as maximal subsets of complete approximate controllability within
a safe region or world W in the state space. In particular, their relative invariance properties and
their behavior under parameter variations are characterized. An application to invariance entropy
shows that the information needed to keep a system in a subset of the state space is determined by
the relatively invariant W -control sets.
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1. Introduction. The purpose of this paper is to analyze controllability proper-
ties of nonlinear systems described by ordinary di¤erential equations under the addi-
tional requirement that a prescribed safe regionW (also called world in the following)
in the state space M is not left. The safe region corresponds to the requirement that
the system should satisfy certain constraints in order to ensure integrity of the sys-
tem. Thus, if a trajectory leaves the safe region W , then the system stops. Another
interpretation is that the complement H := M nW of the world W is a hole in the
state space, through which the system may disappear (in contrast, we think of W
as an island). In the theory of (uncontrolled) dynamical systems, one also speaks of
�open dynamical systems�and there is a considerable body of literature on them, cf.
Demers and Young [7] for a survey. The analysis and computation of safe regions in
control systems also originates from application areas. For example, Tomlin, Pappas
and Sastry [19] discuss safe regions motivated by aircraft tra¢ c control problems.

A central notion for this paper are control sets relative toW , i.e., maximal subsets
of complete approximate controllability within W . For the theory of control sets in
M we refer to Colonius and Kliemann [4]. Control sets and their relations to �ows
and semi�ows have also been analyzed by San Martin and coworkers in the context
of semigroups in Lie groups. Here relations between the structure of semisimple Lie
groups, semigroup actions, and control sets have been established, cf., e.g., Patrão
and San Martin [16]. Parameter dependence of control sets has, in particular, been
analyzed by Gayer in [8] and Graf in [10].

Instead of starting with a system on M and restricting it to W , one could also
start directly with a system on W allowing for �nite existence intervals. We prefer to
start with the system on M , since our main interest is in the relations between the
controllability properties within W and the controllability properties in M .

The information needed to keep a control system in a subset of the state space can
be described by (feedback) invariance entropy, cf. Nair, Evans, Mareels, and Moran
[15] and Kawan [13]. We will show that here the relatively invariant W -control sets
play an important role, since for �large�sets of initial values the invariance entropy
is determined by the relatively invariant W -control sets. In general, it is di¢ cult to
obtain estimates or even formulas for invariance entropy. However, for the invariance
entropy of control sets, good estimates are available by the results in Kawan [12].
Hence our result reducing the computation of invariance entropy to this situation is
of interest.
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The original motivation for the analysis of invariant control sets is due to the fact,
that they often determine the supports of stationary measures of associated random
systems; cf. Arnold and Kliemann [1], Colonius, Gayer, Kliemann [5]. We hope to
show in future work, that relatively invariant control sets can be used for the analysis
of transient behavior of random systems.

The contents of this paper is as follows: Section 2 presents the setting of control
systems restricted to open (not invariant) subsets W of the state space and speci�es
relevant accessibility notions. In Section 3 W -control sets, i.e., maximal subsets of
approximate controllability restricted to W , are introduced and their main properties
are characterized; in particular, also their parameter dependence is studied. Section
4 concentrates on relatively invariant W -control sets, which cannot be left without
leaving W . These are the W -control sets which are closed relative to W and their
existence is characterized. Furthermore, Theorem 4.12 gives conditions which ensure
that, under variation of a parameter �, an invariant control set (in M) generates a
family of relatively invariant W�-control sets. Section 5 presents an application to
invariance entropy given in Theorem 5.2 and Section 6 illustrates the results using a
model of a continuous stirred tank reactor.

Notation: For nonempty subsets A;B of a metric space X with metric d and
points x 2 X we let

dist(x;A) := inf
a2A

d(x; a) and dH(A;B) := maxfsup
a2A

dist(a;B); sup
b2B

dist(b; A)) � 1:

2. Preliminaries. Let M be a connected smooth Riemannian manifold of di-
mension d (endowed with the distance d induced by the Riemannian metric) and let
X :M�Rm ! TM be a continuous map such that X(�; u); u 2 Rm are smooth vector
�elds (here and below, smooth means C1). Consider a control system on M given
by

_x(t) = X(x(t); u(t)); u 2 U ; (2.1)

with U = fu : R ! Rmju(t) 2 U for all t 2 R, locally integrableg. Here U is a
nonvoid subset of Rm. For x 2 M and u 2 U the unique (maximal) local solution
with '(0; x; u) = x is denoted by '(t; x; u) de�ned on the maximal (open) interval
I(x; u) containing 0.

Fix a nonvoid open and connected subset W � M with compact closure clW
called the world in which the system lives. The set W may also be considered as
a state constraint or a safe region, which the system must not leave. Naturally, W
is a submanifold of M with equal dimension. The dynamics restricted to W are
determined by the restriction of X

_xW (t) = XW (xW (t); u(t)); u 2 U ;with XW := XjW�Rm : (2.2)

The (unique) solutions 'W (t; x; u) of this W -system coincide with the solutions of
system (2.1) restricted to W . Using compactness of the closure of W , one �nds that
for every x 2 W and every u 2 U the solutions have the following property: Either
'W (t; x; u) = '(t; x; u) is de�ned for all t � 0 or '(�+; x; u) 62 W for some �+ > 0;
analogously for negative times. Thus the existence interval of 'W (t; x; u) has the form

IW (x; u) = (���(x; u); �+(x; u))

with ��(x; u) > 0, and ��(x; u) < 1 implies '(��(x; u); x; u) 62 W ; in this case
'(��(x; u); x; u) is an element of the boundary @W of W .
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Remark 2.1. We impose the assumption that the closure of W is compact, since
this considerably simpli�es a number of arguments, cp. in particular Proposition 2.5.
Note that the boundary @W = @(clW ) of the compact set clW is compact.

Remark 2.2. The set W is considered in the topology induced by M , i.e., the
open sets in W are of the form A \W for an open subset A of M . Since W is open,
a set O � W is W -open i¤ it is open in M and neighborhoods in W coincide with
neighborhoods in M . In contrast, closed sets in W may not be closed in M and we
denote for a set A � W the W -closure by clW (A). Furthermore, the boundary @WA
with respect to W of a subset A �W is given by

@WA := (clW (A)) \ (clW (W nA))

and hence @WA may be a proper subset of the boundary @A with respect to M of A.
Furthermore, @A = @WA [ (@A \ @W ).

Next we discuss reachability properties withinW . For later purpose, we formulate
the following slightly more general de�nition.

Definition 2.3. Consider a control system of the form (2.1) and let A � M .
The A-reachability set of x 2 A up to time T > 0 is

OA;+�T (x) :=

�
y 2 Aj there are u 2 U and t 2 [0; T ] \ I(x; u) with

y = '(t; x; u) and '(t0; x; u) 2 A for all t0 2 [0; t]

�
:

The A-controllability set of x up to time T is

OA;��T (x) :=

�
y 2 Aj there are u 2 U and t 2 [0; T ] \ I(y; u) with

x = '(t; y; u) and '(t0; y; u) 2 A for all t0 2 [0; t]

�
:

Furthermore,

OA;+(x) :=
[
T>0

OA;+�T (x) and O
A;�(x) :=

[
T>0

OA;��T (x):

If A = M we just write O+(x) etc. Considering system (2.1) and the restricted
system (2.2) one has for x 2W

OW;+�T (x) = fy 2W jthere are u 2 U and t 2 [0; T ] \ IW (x; u) with y = 'W (t; x; u)g;
(2.3)

and analogously for the other sets de�ned above.
Next we construct an auxiliary system de�ned on the state space W using a

smooth cuto¤ function which is positive on W and vanishes on the boundary of W .
We use the following result from Lee [14, Lemma 2.29].

Lemma 2.4. Let W be an open set in M . Then there exists a smooth function
� :M ! [0; 1] with �(x) > 0 for all x 2W and �(x) = 0 for x 2M nW .

Next we de�ne the following auxiliary control system. Consider system (2.1) and
de�ne with a cuto¤-function � as given by Lemma 2.4

_y = �(y)X(y; v); v 2 U . (2.4)

Note that the vector �elds �(�)X(�; u); u 2 U , are de�ned onM and vanish onM nW .
The local trajectories of (2.4) with initial condition y(0) = x0 2 M are denoted by
 (�; x0; v) for � in a maximal (open) existence interval around �0 = 0.
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The following discussion relates accessibility properties of the three control sys-
tems (2.1), (2.2) and (2.4). We begin with the following lemma relating trajectories
of (2.2) and (2.4).

Proposition 2.5. (i) For every x0 2 W and every control v 2 U the solution
 (�; x0; v) of (2.4) exists for all � 2 R.

(ii) Let x0 2 W . For every solution 'W (t; x0; u); t 2 IW (x0; u), corresponding to
a control u 2 U one �nds a control v 2 U such that the trajectories f'W (t; x0; u) j t 2
IW (x0; u)g for (2.2) and f (�; x0; v) j � 2 Rg for (2.4) coincide. Conversely, for
every solution  (�; x0; v); � 2 R, corresponding to a control v 2 U one �nds a control
u 2 U such that the trajectories f (�; x0; u) j � 2 Rg for (2.4) and f'W (t; x0; u) j t 2
IW (x0; u)g for (2.2) coincide. The same is true for the positive semi-trajectories with
t � 0 and � � 0, respectively.

Proof. (i) For every control value u 2 U the right hand side �(�)X(�; u) of (2.4) is
smooth and vanishes on the boundary of the compact set clW . Using local existence
and uniqueness of solutions, no trajectory  (�; x0; v); x0 2 W; v 2 U , can reach in
�nite time the boundary of W . Hence the solutions of (2.4) exist for all � 2 R.

(ii) Consider for x0 2 W and u 2 U the solution x(t) := 'W (t; x0; u); t 2
IW (x0; u), and de�ne �(t) :=

R t
0
[�('W (s; x0; u))]

�1
ds; t 2 IW (x0; u). The transfor-

mation t 7! �(t) is continuously di¤erentiable with d
dt�(t) = [�('W (t; x0; u))]

�1 6= 0.
Hence the transformation is invertible and the inverse ��1(�) exists with

d

d�
��1(�) =

�
d

dt
�(�)j��1(�)

��1
= �('W (�

�1(�); x0; u)):

De�ne y(�) := x(��1(�)) = 'W (�
�1(�); x0; u). Then one computes

d

d�
y(�) = _x(��1(�))

d

d�
��1(�)

= X('W (�
�1(�); x0; u); u(�

�1(�)))�('W (�
�1(�); x0; u))

= X(y(�); v(�))�(y(�));

where v(�) := u(��1(�)); � 2 R. Thus uniqueness of the solutions implies y(�) =
 (�; x0; v); � 2 R.

For the converse, consider for x0 2W and v 2 U the solution y(�) :=  (�; x0; v);
� 2 R, and de�ne 
(�) :=

R �
0
�( (�; x0; v))d�; � 2 R. Then one argues as above.

Finally, the time transformations keep zero �xed and preserve the orientation,
hence the assertion about the semi-trajectories follows.

Proposition 2.5(i) shows that we may restrict the state space of system (2.4) to
W . This will be done in the sequel.

We will use the following version of local accessibility.
Definition 2.6. A control system of the form (2.1) is locally accessible at x 2M ,

if for every neighborhood N of x and every T > 0

intON;+�T (x) 6= ; and intO
N;�
�T (x) 6= ;:

The system is locally accessible if it is locally accessible at every point of its state space
M .

Remark 2.7. In the literature, di¤erent versions of local accessibility can be
found: Crouch [6] calls a system locally accessible if for each x 2M and neighborhood
N of x the reachable set ON;+(x) has nonvoid interior. Colonius and Kliemann [4, p.
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48] require that for each x 2 M and T > 0 the sets O��T (x) have nonvoid interiors.
Both conditions are weaker than the de�nition above which is appropriate for our
purposes.

Throughout the rest of this paper we assume that system (2.1) is locally accessible
at every point of W . Since W is an open subset of M , this is equivalent to local
accessibility of (2.2) (i.e., at every point of its state space W ).

Definition 2.8. A control system of the form (2.1) satis�es the Lie algebra
rank condition (ARC) at x0 2 W , if the rank of the Lie-Algebra LiefX(�; u); u 2 Ug
generated by the vector �elds X(�; u) evaluated at x0 coincides with the dimension d
of M .

Since W is open, condition (ARC) holds for (2.1) at a point x0 of W i¤ it holds
for (2.2) at x0. Local accessibility of (2.1) (or, equivalently, of (2.2)) at x0 2 W
follows if the Lie algebra rank condition (ARC) holds at x0; cf. Sontag [18, Chapter
4, Theorem 9]. We also note the following property.

Lemma 2.9. If system (2.1) is locally accessible at every point of W , then

OW;+(x0) � clW
�
intOW;+(x0)

�
for every x0 2W: (2.5)

Proof. Let x 2 OW;+(x0). By local accessibility for every neighborhood N � W
of x there exists y 2 intON;+(x) � N \ intOW;+(x0). Hence there is a sequence (yi)
with yi 2 intOW;+(x) converging to x and x 2 clW

�
intOW;+(x0)

�
follows.

Next we show that local accessibility of system (2.2) is equivalent to local acces-
sibility of system (2.4).

Proposition 2.10. System (2.4) is locally accessible i¤ system (2.2) is locally
accessible.

Proof. Assume local accessibility of (2.2). Let x0 2 W and �x T > 0 and a
neighborhood N � W of x0. Choose N small enough such that clN \ @W = ?. We
claim that there is T 0 > 0 such that for all u 2 U there is v 2 U such that

f'W (t; x0; u) j t 2 [0; T 0] and '(t0; x0; v) 2 N for all t0 2 [0; t]g

is contained in

f (�; x0; v) j � 2 [0; T ] and  (� 0; x0; v) 2 N for all � 0 2 [0; � ]g:

Then it follows that ON;+�T 0 (x0) is contained in�
y 2 N j there are � 2 [0; T ] and v 2 U with

y =  (�; x0; v) and  (� 0; x0; v) 2 N for all � 0 2 [0; � ]

�
: (2.6)

Since by assumption ON;+�T 0 (x0) has nonvoid interior, also the set in (2.6) has nonvoid
interior. Arguing similarly for negative times one obtains local accessibility of (2.4).

In order to prove the claim, note �rst that there is � > 0 such that �(x) � � > 0
for all x 2 N , since clN \ @W = ?. Then it follows for all v 2 U and � 2 R

 (�; x0; v) 2 N implies �( (�; x0; v)) � �:

The proof of Proposition 2.5(ii) shows that for every u 2 U there is v 2 U with

'W (t; x0; u) =  (�; x; v); t 2 IW (x0; u);

with � = �(t) and v(�) = u(��1(�)), where �(t) :=
R t
0
[�('W (s; x0; u))]

�1
ds; t 2

IW (x0; u).
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Let T 0 := T
� . Then for all u 2 U and all t 2 [0; T

0] one has that '(t0; x0; v) 2 N
for all t0 2 [0; t] implies

�(t) =

Z t

0

1

�('W (s; x0; u))
ds � T 0

1

�
= T

and hence 'W (t; x0; u) =  (�; x0; v) with � 2 [0; T ] and the claim is proved. Analo-
gous arguments for negative time show that system (2.4) is locally accessible.

Similarly one argues for the converse implication.

3. W -control sets. In this section, the central notion of this paper is de�ned,
subsets of complete approximate controllability which are maximal within the world
W , and their basic properties are proved. We will rely on the results in Colonius
and Kliemann [4, Chapter 3] (where global existence of solutions is supposed) and
emphasize the new features due to the restriction to W .

Definition 3.1. For system (2.1) a set D �W with nonvoid interior is called a
W -control set if (i) D � clWOW;+(x) for all x 2 D, and (ii) D is maximal with this
property, i.e. if D0 � D has property (i), then D0 = D.

The W -control sets with W = M coincide with the control sets with nonvoid
interior as considered in [4]. Nonvoid interior of a control set (de�ned as above with
W = M) is not required in [4], but this requirement simpli�es many arguments and
covers most interesting cases. Hence we restrict our attention to these sets. In the
following, we just speak of control sets when we mean W -control sets with W =M .

Remark 3.2. Since approximate controllability holds in a W -control set D, [4,
Proposition 3.2.5] implies that it is contained in a unique control set DM . The con-
verse is false: Example 3.5 presents a world without a W -control set, whereas there
is a control set which has nonvoid intersection with W .

First we show that the W -control sets of system (2.1) coincide with the control
sets of system (2.4).

Proposition 3.3. A set D � W is a W -control set for system (2.1) i¤ it is a
control set for system (2.4).

Proof. This is a consequence of Proposition 2.5(ii): For every x 2W the reachable
set from x of system (2.4) coincides with the reachable set OW;+(x) of system (2.2),
hence also their closures with respect to W coincide.

Proposition 3.3 together with Proposition 2.5 shows that all general results in
Colonius and Kliemann [4, Chapter 3] referring only to controllability properties of
control sets are also valid forW -control sets. Furthermore, the only di¤erence between
the trajectories of (2.1) in W and the trajectories of (2.4) is the parametrization by
time: If a trajectory '(tk; x; u) of (2.4) approaches the boundary of W , it follows that
tk ! �1, while the trajectories of (2.1) may approach the boundary of W in �nite
time. Thus only theW -control sets whose boundary intersects the boundary ofW are
of independent interest. Recall also that by Proposition 2.10 system (2.4) is locally
accessible i¤ system (2.1) is locally accessible. Then, in particular, for every element
x of a W -control set D one has intD � OW;+(x). This will be used frequently.

One may be led to think that the W -control set can be obtained from a control
set by simply intersecting it with the world W and paying some attention to the
boundary. But the following example is a W -control set with positive distance to the
boundary of the world and contained in an invariant control set which is not a subset
of W .

Example 3.4. Let the manifold M := R2 n f0g be parametrized by polar coordi-
nates (r; �). The world W is the open right half plane W := f(r; �) j j�j < �

2 g. Let
6



the system be given by�
_r
_�

�
=

 
r(1� r)
sin2

�
�
2

� !
+ u1(t)

�
1
0

�
+ u2(t)

�
0
1

�
=:

�
X1(r; �; u1)
X2(r; �; u2)

�
;

(3.1)

(u1(t); u2(t)) 2 U :=
�
0;
3

4

�
�
�
� sin2

��
8

�
; sin2

��
8

��
:

The accessibility rank condition (ARC) holds on M . For points (r; �) with radius r 2�
1; 32
�
, one can choose u1 such that X1(r; �; u1) is positive, negative or zero. For r < 1,

X1(r; �; u1) is positive, and for r > 3
2 , X1(r; �; u1) is negative, independently of the

choice of u1. If the angle j�j < �
4 , on can choose u2 such that X2(r; �; u2) is positive,

negative or zero. For all other values of the angle X2(r; �; u2) > 0, independently of
the control. Hence a W -control set D is given by D := f(r; �) j j�j < �

4 ; 1 � r � 3
2g.

On the whole state space M , the control set DM containing D is given by DM :=
f(r; �) j 1 � r � 3

2 ; � 2 [0; 2�)g, which can be seen as follows: Given two points (r0; �0)
and (r1; �0) in C, one �rst chooses a control, which keeps � constant and steers (r0; �0)
to (r1; �0). Then one selects a control that keeps r constant and X2(r; �; u2) constant
and positive. By going along the circle with radius r1 with constant speed one reaches
(r1; �1). The control set DM is invariant, since it is closed.

Note that DM \W 6= D and moreover d (D; @W ) > 0. Similar examples can be
constructed in systems containing a periodic orbit.

Example 3.5. Consider the system governed by equation (3.1) with the same
world W and controls with values

(u1(t); u2(t)) 2 U :=
�
0;
3

4

�
�
�
0; sin2

��
8

��
:

For every control u2 one has X2(r; �; u2) > 0 and every point in W leaves W eventu-
ally �owing counter-clockwise. So there is no W -control set. Again DM = f(r; �)j1 �
r � 3

2 ; � 2 [0; 2�)g is a control set on M = R n f0g.
An important question is the behavior of W -control sets under change of an

external parameter �. Consider the following family of control systems on M with
u 2 U and � 2 A � Rk:

_x(t) = X(�; x(t); u(t)); u 2 U ; (3.2)

with a smooth map X : Rk �M � Rm ! TM such that X(�; �; �); � 2 Rk, satisfy
the conditions on (2.1). The corresponding solutions are denoted by '�(t; x; u). We
suppose that a family of open worlds W� for the �-systems is given, while the control
range U does not depend on �. The following theorem shows that under the Lie
algebra rank condition (ARC) the W -control sets behave nicely under parameter
variation. Recall that a set valued map x 7! F (x) between metric spaces is lower
semicontinuous at a point x0 if for every open set U with F (x0) \ U 6= ? it follows
that F (x) \ U 6= ? for all x in a neighborhood of x0; cf. Aubin and Frankowska [2,
De�nition 1.4.2].

Theorem 3.6. For the family of systems (3.2), let �0 2 intA and suppose for
the open worlds W� � M that for every compact set K � W�0 there is " > 0 with
K �W� for all � with k�� �0k < ". Consider a W�0-control set D�0 .

(i) Let K � intD�0 be a compact set on which the Lie algebra rank condition
(ARC) is ful�lled for the parameter value �0. Then there is �K > 0 such that for
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all � with k�� �0k < �K there is a unique W�-control set D�
K with K � intD�

K for
system (3.2) with parameter value �.

(ii) Assume that condition (ARC) holds on W�0 for the parameter value �0.
There are �0 > 0 and a unique family ofW�-control sets D� for all � with k�� �0k <
�0 with the following property: For every compact set K � intD�0 there is a �K 2
(0; �0) so that K � intD� for every � with k�� �0k < �K .

(iii) In the situation of (ii), one has that for every open set U � W�0 with
U \ clWD�0 6= ; there is � > 0 such that U \D� 6= ; for all � with k�� �0k < �. In
particular, the set-valued maps � 7! D� and � 7! clD� are lower semicontinuous at
� = �0.

Proof. (i) The proof will show that for all x; y 2 K there is �(x; y) > 0 such that
x; y are in the interior of aW�-control set D� for all � with k�� �0k < �(x; y). Then
compactness of K �K will imply the assertion. First we show that x; y 2 K are in
some control set W� for � close to �0.

The accessibility rank condition (cf. Sontag [18, Theorem 9 in Chapter 4]) implies
that there are u1x; : : : ; u

d
x 2 U and Tx > 0 with the following properties: Let � :=

(�1; : : : ; �d) 2 (0; Tx)d and de�ne u 2 U by

u(t) = uix for t 2 [��1 � � � � � �i�1 � �i;��1 � � � � � �i�1) :

Then the map 	x : (0; Tx)d ! M given by � 7! '�0 (�
P
�i; x; u) has rank d for all

� . Choose �x such that zx := '�0 (�
P
�i;x; x; u) 2 intD�0 . By applying the implicit

function theorem to the map

A� (0; Tx)d !M : (�; �) 7! '�
�
�
X

�i; x; u
�

one �nds �x > 0 and a compact neighborhood N(zx) of zx with

N(zx) �
n
'�
�
�
X

�i; x; u
�
j � 2 (0; Tx)d

o
for all � with k�� �0k � �x:

We may suppose that Tx > 0 is small enough such that the compact setn
'�0

�
�
X

�i; x; u
�
j � 2 [0; Tx]d

o
�W�0 :

Hence there is � > 0 such that it is contained in every set W� with k�� �0k < �: By
continuity of '� with respect to � it follows that we may take �x > 0 small enough
such that for every � with k�� �0k � �x

N(zx) �
n
'�
�
�
X

�i; x; u
�
j � 2 [0; Tx]d

o
�W�:

The same construction for y shows that there are u1y; : : : ; u
d
y 2 U , numbers Ty; �y > 0

and a neighborhood N(zy) of zy := '�0 (
P
�i;y; x; u) 2 intD�0 as well as �y > 0 with

the following property: for every � with k�� �0k � �y

N(zy) �
n
'�
�
�
X

�i;y; y; u
�
j � 2 [0; Ty]d

o
�W�:

We may suppose that �1(x; y) := �y = �x and take T := Tx = Ty > 0 small enough
such that N(zx); N(zy) � intD�0 since x; y 2 intD�0 . In particular, zx; zy 2 intD�0

and there are controls u1; u2 2 U and times S1; S2 > 0 with

'�0W�0 (S1; x; u1) = zy and '
�0
W�0 (S2; y; u2) = zx:
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By continuous dependence on the parameter � there exists �2(x; y) with 0 < �2(x; y) �
�1(x; y) such that for all � with k�� �0k < �2

'� (S1; x; u1) 2 N(zy) and '� (S2; y; u2) 2 N(zx):

As above we may assume that the trajectories '� (t; x; u1) ; t 2 [0; S1] and '� (t; y; u2) ;
t 2 [0; S2]; are in W�. Concatenating the corresponding controls one �nds that this
construction already shows that x and y are in W�-control sets D� for all � with
k�� �0k � �2(x; y). We have to re�ne the construction slightly, in order to show
that x and y are in the interior of D�:

Use again the accessibility rank condition, now for positive time, in order to �nd
u1; : : : ; ud 2 U and T > 0 with the following properties: Let � := (�1; : : : ; �d) 2 (0; T )d
and de�ne u+ 2 U by

u+(t) = ui for t 2 [�1 + � � �+ �i�1; �1 + � � �+ �i�1 + �i) :

Then the map 	 : (0; T )d ! M given by � 7! '�0 (
P
�i; y; u) has rank d for all � .

Choose �+ such that z+ := '�0
�P

�+i ; y; u
+
�
2 intD�0 . By applying the implicit

function theorem to the map

A� (0; T )d !M : (�; �) 7! '�
�X

�i; y; u
+
�

one �nds �+ > 0 and a neighborhood N(z+) of z+ with N(z+) � intD�0 and

N(z+) �
n
'�
�X

�i; y; u
+
�
j � 2 (0; T )d

o
for all � with k�� �0k < �+:

Since there are S3 > 0 and u3 2 U with '�0(S3; z+; u3) = zx we may assume that
N(z+) � O�;�(x) for k�� �0k < �+. Concatenating the corresponding controls one
concludes that all points in N(z+) can be steered to x and then to y, and x and y can
be steered to every point in N(z+) by trajectories of the �-system. The corresponding
trajectories remain in W�, hence there is a W�-control set D� with x; y 2 D� and
N(z+) � D�. Since x can be reached from a point in the interior of D�, it follows
that x 2 intD� (this is a standard property of control sets which follows by continuous
dependence on initial values). This holds for all � with k�� �0k < �(x; y). Since K
is compact, one �nds �nitely many points x1; :::; xn 2 K and �1; :::; �n > 0 such that
every x 2 K is in some control set D�(x) with k�� �0k < �i. Thus for all � with
k�� �0k < mini=1;:::;n �i every point x 2 K is in one of the control sets D�(xi) and
the construction above shows that all D�(xi) coincide, if k�� �0k is small enough.

(ii) SinceW�0 has a countable base, one �nds a sequence of compact sets Kn with
Kn � intKn+1 and

S
n2NKn = intD

�0 , cf. Berger and Gostiaux [3, Lemma 3.2.6]. If
K is a compact set with K � intD�0 , there is n such that K � Kn. In fact, since
for every x 2 K there is m 2 N with x 2 Km � intKm+1, we �nd a neighborhood
N(x) � intKm+1 � intD�0 . By compactness of K, �nitely many N(x) already cover
K and hence K � Kn for some n 2 N.

By assertion (i) one �nds �n > 0 such that there are W�-control sets D�
n with

Kn � intD�
n for all � with k�� �0k < �n:

Since K � Kn for all n, it follows that the W�-control sets D�
n and D

�
m coincide for

� < min(�n ,�m), and hence we may write them as D�. The family of control sets
D� with k�� �0k < � := �1 has the desired property.
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For k�� �0k small enough the family D� is unique. In fact, otherwise, there are
a sequence �m ! �0 and control sets D�m 6= ~D�m and a compact set K � intD�0

such that K � intD�m and K � int ~D�m for m large enough. This cannot be.
(iii) Let U �W�0 be an open set with U \ clWD�0 6= ;. By (ARC) the closure of

a control set coincides with the closure of its interior. Hence Proposition 3.3 implies
clWD

�0 = clW intD
�0 , and it follows that U \ intD�0 6= ; and one �nds a compact set

K � U \ intD�0 . Hence by (ii) there is " > 0 such that for all � with k�� �0k < ",
there is a W�-control set D� with K � intD�. It follows that U \D� 6= ; and also
the lower semicontinuity properties are shown.

We note the following corollary.
Corollary 3.7. If system (3.2) is locally accessible on W for all � in a neigh-

borhood of �0, then for all � with k�� �0k small enough there are W -control sets D�

with intD�0 \ intD� 6= ;
Proof. By [4, Theorem A.4.5] local accessibility implies that the Lie algebra rank

condition (ARC) holds on an open and dense subset ofW . (This theorem applies here,
since local accessibility in the sense of De�nition 2.6 implies the weaker version of local
accessibility used in [4], cf. Remark 2.7.) Hence there is a point x 2 intD�0 where
(ARC) holds. Theorem 3.6(i) shows that there is � > 0 such that for k�� �0k < �
there is a control set D� with x 2 intD�.

Remark 3.8. A di¤erent approach to parameter dependence is found in Gayer
[8] and Graf [10], where the parameter in�uences the control range U .

4. Relatively invariantW -control sets. This section discussesW -control sets
which are invariant with respect to W and hence deserve special interest.

First recall from Colonius and Kliemann [4] that an invariant control set for a
system of the form (2.1) is a control set C with clC = clO+(x) for all x 2 C. If the
system is locally accessible and the solutions are de�ned on R, the invariant control
sets are the closed control sets, cf. [4, Theorem 3.1.5]. Next we de�ne a generalization
for W -control sets.

Definition 4.1. AW -control set C for system (2.1) is called relatively invariant,
if

clWC = clWOW;+(x) for all x 2 C:

It is an immediate consequence of the de�nitions and Proposition 3.3 that the
relatively invariantW -control sets for system (2.1) coincide with the invariant control
sets of system (2.4). Hence the relatively invariant W -control sets are the control sets
which are closed relative to W , i.e., clWC =C, if system (2.4) is locally accessible.

Next we show that a relatively invariantW -control set that is bounded away from
the boundary of the world is itself a invariant control set on the whole manifold M .

Proposition 4.2. Let C be a relatively invariant W -control set and assume that
system (2.1) is locally accessible on W . Then C is an invariant control set in the
state space M i¤ @W = ? or there is � > 0 with dist (x; @W ) � � for every x in C.

Proof. If C is an invariant control set for the system in M , the subset C of
the open set W is closed, hence compact in clW and in M . Thus there is � >
0 with dist (x; @W ) � � for every x 2 C. Conversely, suppose that � > 0 with
dist (x; @W ) � � for every x 2 C. Since C = clWOW;+(x) for every x 2 C, it follows
that dist (y; @W ) � � for every y 2 clWOW;+(x). Thus clO+(x) = clWOW;+(x) = C
for every x 2 C showing that C is an invariant control set in the state space M .

The following proposition gives a gives a criterion for checking relative invariance.
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Proposition 4.3. Assume that system (2.1) is locally accessible from all points
in the closure of a W -control set D. Then D is relatively invariant i¤ D is closed
relative to W , i.e., clWD = D.

Proof. Let D be relatively invariant and consider x 2 clWD. Then OW;+(x) �
clWC, since otherwise continuous dependence on initial values implies that there are
y 2 C and t > 0 with '(t; y; u) 2 OW;+(y)nclWC contradicting relative invariance. By
local accessibility intOW;+(x) 6= ?, hence there is a point z 2 intOW;+(x)\C. Using
the de�nition of relatively invariant W -control sets, we �nd clWC = clWO+(z) �
clWO+(x) and clWC =clWO+(x) follows. Now the maximality property ofW -control
sets implies x 2 C showing that D is closed in W . The converse follows as in [4,
Theorem 3.2.20].

Next we will analyze the existence and the number of relatively invariant W -
control sets. The next theorem follows as Colonius and Kliemann [4, Proposition
3.3.7 and Theorem 3.3.10] where a similar situation is considered and hence the proof
will be omitted.

Theorem 4.4. Suppose that system (2.1) is locally accessible in the world W .
(i) Fix x 2 W and assume that there exists a set Q � W which is closed in M

such that clWOW;+(y) \ Q 6= ; for all y 2 OW;+(x). Then there exists a relatively
invariant W -control set C � clWOW;+(x):

(ii) The following assertions are equivalent:
(a) There is a set Q �W which is closed in M such that Q\ clWOW;+(x) 6= ;

for every x 2W .
(b) For every x 2 W there is a relatively invariant W -control set C contained

in clWOW;+(x) and there are only �nitely many relatively invariant W -control sets.
The following example shows that the number of relatively invariant W -control

sets in a world W may be in�nite.
Example 4.5. Let W := (0; 1) �M := R and consider

_x(t) = x sin
1

x
+ xu =: X(x; u) with u 2 U :=

�
� sin

��
4

�
; sin

��
4

��
:

Note that accessibility rank condition (ARC) holds on W . The sets

Ck :=

��
2k� +

�

4

��1
;
�
2k� � �

4

��1�
; k 2 N;

are relatively invariant W -control sets. These W -control sets are in fact invariant
control sets in M = R. They cluster at the boundary of W (they are separated by
control sets which are not invariant.)

In order to analyze the behavior of in�nitely many relatively invariant W -control
sets we adapt the following lemma from Colonius and Kliemann [4, Lemma 4.5.4].

Lemma 4.6. Let x 2 W and u 2 U with '(T; x; u) 2 intOW;+�T+S(x) for some
T; S > 0 and assume that the system is locally accessible at '(T; x; u). Then

x 2 intOW;��T+2S('(T; x; u)):

Proof. We �nd an open neighborhood N(y) � intOW;+�T+S(x) of y := '(T; x; u).

Local accessibility at y implies that there is z 2 N(y) \ intOW;��t0 (y) for every t0 with
0 < t0 � S. Then there are a control u and a neighborhood N(x) of x such that
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N(x) is mapped in a time T1 � T + S via the solution map corresponding to u onto
a neighborhood N(z) of z contained in N(y) \ OW;��t0 (y). We obtain

x 2 N(x) � OW;��T1+t0(y) � O
W;�
�T+2S('(T; x; u)):

The following theorem shows that in�nitely many relatively invariant W -control
sets can only cluster at the boundary of the world W .

Theorem 4.7. Suppose that Cn; n 2 N, are countably many pairwise distinct
relatively invariant W -control sets for system (2.1) on an open, relatively compact
worldW with @W 6= ;. If the system is locally accessible onW , then dH (Cn; @W )! 0
in the Hausdor¤ metric for n!1.

Proof. If the assertion is false, one �nds � > 0 and nk ! 1 such that the W -
control sets Cnk are pairwise di¤erent and there are xk 2 Cnk with dist(xk; @W ) � �.
This sequence has a cluster point and every cluster point x satis�es dist(x; @W ) � �, so
x 2W . By local accessibility inW there are T; S > 0 and a control u with '(T; x; u) 2
intOW;+�T+S(x) � W . By Lemma 4.6 we �nd that x 2 intOW;��T+2S('(T; x; u)). Hence
for k 2 N large enough one has

xk 2 OW;��T+2S('(T; x; u)):

This shows that for all k large enough one �nds that the point xk 2 Cnk can be
steered to the single point '(T; x; u) 2W . This contradicts relative invariance of the
pairwise di¤erent W -control sets Cnk .

The following examples further illustrate the di¤erence between W -control sets
and control sets in the whole state space. The �rst example presents a W -invariant
control set which is variant on the whole manifold and the second presents aW -control
set which is not relatively invariant and contained in an invariant control set.

Example 4.8. Consider on M := R with world W := (�1; 1) the system

_x = x+ u with u(t) 2 U := [�1; 1] :

As one can easily see, the system is controllable on W , hence W itself is a relatively
invariant W -control set. The set W is also a control set in the whole state space R.
In fact, if x � 1, than x + u � 0 for all u and the reachable set is O+(x) = [x;1).
Analogously one �nds that for x � �1 the reachable set is O+(x) = (�1;�x]. The set
W is not an invariant control set, since for x 2 (�1; 1) the reachable set is O+(x) =
R.

Example 4.9. The set DM in Example 3.4 is an invariant control set on the
whole manifold, whereas D is a W -control set which is not relatively invariant.

Example 4.10. Let D be an arbitrary control set on M for a system of the form
(2.1) and de�ne the world W as the domain of attraction of D, i.e.,

W := fy 2M j O+(y) \ intD 6= ;g:

Then D is a relatively invariant W -control set. In fact, from every x 2 D one can
reach approximately every y 2 D by a trajectory in D � W , thus D � clWOW;+(x)
showing that D is a W -control set. Furthermore, if y 2 OW;+(x) � O+(x)\W , then
O+(y) \ intD 6= ;, and hence maximality of D as a control set implies that y 2 D.
Hence OW;+(x) � D for every x 2 D and relative invariance follows.
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Finally, we discuss the behavior of invariant control sets which lose their invariance
under parameter variation. For this we change the perspective: Now the worlds W�

are no longer taken as given, but are constructed. Recall that a neighborhood N of a
compact set K is a set containing K in its interior with dH(N;K) > 0.

Lemma 4.11. Consider a family of systems of the form (3.2) de�ned on M and
let �0 2 intA. For � = �0 suppose that D�0 is a compact invariant control set in
M and accessibility rank condition (ARC) holds on D�0 . Fix a point x0 2 intD�0 .
Then there are a neighborhood N of D�0 and a constant �0 > 0 such that for every
� with k�� �0k < �0 there are a world W� with N � W� = OW�;�(x0;�) and
a W�-control set D� for the �-system depending lower semicontinuously on � in
�0. For all compact subsets K � intD�0 there is �K 2 (0; �0) with K � intD� for
k�� �0k < �K .

Proof. First observe that the accessibility rank condition and hence local accessi-
bility holds on a neighborhood of D�0 for all � near �0 by the continuity assumption.
By local accessibility and compactness of D�0 there is T > 0 such that for every
y 2 D�0 there are t(y) 2 (0; T ] and a control u(y) 2 U with '�0(t; y; u(y)) 2 D�0

for t 2 (0; T ] and '�0(t(y); y; u(y)) = x0. Take a compact subset K � intD�0 con-
taining x0 in its interior. By continuous dependence on the initial value one �nds
for every y 2 D�0 a number "(y) > 0 and an open neighborhood N(y) such that for
k�� �0k < "(y) one has '�(�(y); N(y); u(y)) � K. Finitely many of these neighbor-
hoods N(yi); i = 1; :::; n; cover D�0 . Then N :=

Sn
i=1N(yi) is an open neighborhood

of D�0 and we de�ne W�0 := N . Then, naturally, D�0 �W�0 is a W�0-control set.
For � 6= �0 with k�� �0k < "0 := mini=1;:::;n "(yi) let a world W� for the

�-system be de�ned by

W� :=
n[
i=1

f'�(t; y; uyi) j y 2 N(yi) and t 2 [0; �(yi)]g:

In fact, all sets W� are open and connected with compact closure and contain N =
W�0 . Thus all assumptions of Theorem 3.6 are ful�lled. It follows that for "0 >
0 small enough there is a family of W�-control sets D� with K � intD�. Then
controllability in the interior of D� implies that x0 2 OW

�;+(y;�) for all y in W�,
i.e., W� � OW�;�(x0;�).

Furthermore, Theorem 3.6(iii) shows lower semicontinuity of D� in � = �0.
The following theorem is a main result of this paper. It gives conditions which

ensure that an invariant control set C�0 in M turns into W -control sets C� which
are relatively invariant. Thus this result gives insight into the behavior of control sets
when their invariance is lost.

Theorem 4.12. Consider a family of systems of the form (3.2) and suppose that
C�0 is a compact invariant control set in the state spaceM and that for �0 accessibility
rank condition (ARC) holds on C�0 . Then there are �0 > 0 and a neighborhood N of
C�0 such that for � with k�� �0k < �0 the �-systems have the following property:
there are a family of worldsW� containing N and relatively invariantW�-control sets
C� depending lower semicontinuously on � in �0 such that for all compact subsets
K � intC�0 there is �K 2 (0; �0) with K � intC� for k�� �0k < �K .

Proof. It only remains to show that theW�-control sets C� := D� constructed in
the proof of Lemma 4.11 are relatively invariant for � close to �0. If theW�-control set
D� is not relatively invariant, there are x1 2 D� and u� 2 U with '�W�(t�; x1; u

�) 2
W� nclW�D�. Choose a point x0 2 intD�0 . In the proof of Lemma 4.11 it was shown
that x0 2 D�. Hence approximate controllability in the interior of a control set and
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continuous dependence on the initial value imply that we may take x1 = x0. Since
W� � OW�;�(x0;�), this implies the contradiction '�W�(t�; x0; u

�) 2 D�.
Compare the assertion of Theorem 4.12 to Theorem 3.6 where another lower

semicontinuity result or arbitrary W�-control sets was given.
Remark 4.13. If the control sets D� are invariant control sets in M , they may

depend continuously on �. If the relatively invariant W�-control sets D� are not
invariant control sets, they have nonvoid intersection with the boundary of W�, and
hence the map � 7! clC� is discontinuous in � = �0 with respect to the Hausdor¤
metric, since N � W� and N is a neighborhood of C�0 . This illustrates the interest
of this result for the understanding of the loss of invariance.

Remark 4.14. For control ranges depending monotonously on a scalar parame-
ter �, Gayer [8, Corollary 24] has shown that invariant control sets remain invariant
if they change continuously (in the Hausdor¤ metric). On the other hand, Theorem
4.12 implies that conversely invariant control sets which become variant change dis-
continuously and become relatively invariant W�-control sets for appropriately de�ned
worlds W�.

The worlds W� constructed above and hence the associated relatively invariant
W�-control sets C� certainly are not unique (the C� are unique for given W�.)
Furthermore, the worlds W� are constructed locally around C�0 . Hence one may
ask, if one may construct worlds and corresponding relatively invariant control sets
which are unique. It is easy to see that for worlds W1;W2 with relatively invariant
Wi-control sets Ci satisfying C1\C2 6= ? the union C1[C2 is a (W1 [W2)-control set
which, however, may not be relatively invariant (e.g., one may go from C1 into W2).
Nevertheless, if the worlds increase monotonically, the following proposition shows
that maximal relatively invariant W -control sets exist.

Proposition 4.15. Let Wi; i 2 I, where I is an index set, be a family of worlds
contained in a compact set K � M , and suppose that the worlds are linearly ordered
with respect to set inclusion, i.e., Wi � Wj or Wj � Wi for all i; j 2 I. Let Ci be
relatively invariant Wi-control sets with

T
i2I intCi 6= ?. Then C :=

S
i2I Ci is a

relatively invariant W -control set for the world W :=
S
i2IWi.

Proof. Since Wi � K for all i, it follows that W is relatively compact. Further-
more, W is open and connected, thus W is a world. It is easily seen that approximate
in C controllability holds and that C is a maximal set with this property. It remains to
show that C is relatively invariant: So suppose that x0 2 C and '(t0; x0; u0) 2W nC
where t0 > 0; u0 2 U and '(t; x0; u0) 2 C for t 2 [0; t0). Then there are indices i; j 2 I
such that x0 2 Ci and '(t0; x0; u0) 2 Wj n Cj . Then either Wi � Wj or Wj � Wi.
In the �rst case, x0 2 Cj . Since by Proposition 4.3 the set Cj is closed in W there
is t1 2 (0; t0) with '(t1; x0; u0) 2 Wj n clCj contradicting relative invariance of Cj in
Wj . In the second case, '(t0; x0; u0) 2Wi nCi and the same arguments again yield a
contradiction.

The following one-dimensional example illustrates the behavior of control sets and
W -control sets as described in Theorem 4.12.

Example 4.16. Consider the parameter-dependent system on R given by

_x = x2 � x+ �u

with u(t) 2 U := [0; 1] and � 2 (0;1).
For u = 0 one has x2 � x + �u = x2 � x < 0 i¤ x 2 (0; 1). For u 2 [0; 1] and

1
4 � �u � 0 one has x2 � x+ �u = (x� 1

2 )
2 � 1

4 + �u > 0 i¤ x > 1
2 �

q
1
4 � �u and

1
4 � �u � 0. Now

1
4 � �u � 0 i¤ u �

1
4� .
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Let � � 1
4 . Then two control sets in M = R exist:

C�M =

"
0;
1

2
�
r
1

4
� �

#
and D�

M =

 
1

2
+

r
1

4
� �; 1

!
:

Note that C�M is an invariant control set, while D�
M is not invariant. For � = 1

4 the

closure of D
1
4

M =
�
1
2 ; 1
�
intersects C

1
4

M = [0; 12 ]. For � >
1
4 , the two control sets merge

and give a single control set D�
M = [0; 1) which is not invariant.

Theorem 4.12 can be applied with �0 = 1
4 to the invariant control set C

1
4 :=

C
1
4

M = [0; 12 ]. Let N := (a; b) be a neighborhood of C
1
4 with a < 0 and 1

2 < b < 1.
For � > 1

4 consider a world W
� := (c�; d�) with c� � a and b � d� < 1. Then a

relatively invariant W�-control set is given by D� := [0; d�). Clearly, D� 6= D�
M since

d� < 1:Note that in this simple example, the worlds W� may be chosen independently
of �.

Remark 4.17. Example 4.16 also shows that for � = �0 every neighborhood of
C�0 and hence every world W� as in Theorem 4.12 may have nonvoid intersection
with control sets di¤erent from C�0 .

5. Relatively invariant W -control sets and invariance entropy. In this
section, we present an application of our results on relatively invariant W -control sets
to invariance entropy.

We use the following version of invariance entropy for system (2.1). Let K;Q
be nonempty subsets of the state space M where K is a compact subset of Q, and
assume that for every x 2 K there is a control u 2 U such that '(t; x; u) 2 intQ for
all t > 0. Thus, in particular, (K;Q) is an admissible pair in the sense of Kawan [13,
De�nition 2.1].

For � > 0 a set S � U of control functions is called � -spanning for (K;Q) if for
every x 2 K there is u 2 S with '(t; x; u) 2 Q for all t 2 [0; � ]. By rinv(�;K;Q) we
denote the minimal number of elements in such a set (if no �nite � -spanning set exists
rinv(�;K;Q) :=1).

Then the invariance entropy of (K;Q) is de�ned by

hinv(K;Q) := lim sup
�!1

1

�
log rinv(�;K;Q) � 1:

If K is contained in the interior of Q, the assumptions on (K;Q) guarantees the
existence of �nite � -spanning sets.

Lemma 5.1. Fix a world W and suppose for the compact set Q := clW that
W = intQ and W is connected.

(i) For every W -control set D and compact subsets K1;K2 � D with nonvoid
interior one has

hinv(K1; D) = hinv(K2; D).

(ii) Let Ci; i 2 f1; :::;mg be relatively invariant W -control sets and consider the
union K̂ :=

Sm
i=1Ki of compact subsets Ki � Ci. Assume that local accessibility holds

on Q̂ :=
Sm
i=1 Ci. Then

hinv(K̂;Q) = hinv(K̂; Q̂) = max
i=1;:::;m

hinv(Ki; Ci):
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Proof. (i) Kawan [13, Corollary 5.1] shows the assertion for control sets D in M .
The proof immediately applies also to W -control sets.

(ii) Observe that K̂ is compact. Since Q̂ � Q the inequality hinv(K̂;Q) �
hinv(K̂; Q̂) is trivial. For the converse �x � > 0 and consider a � -spanning set S � U
for (K̂;Q). Thus for every x 2 K̂ there is a control u 2 S with '(t; x; u) 2W = intQ
for all t 2 [0; � ]. For every i relative invariance of Ci with respect to W implies that
'(t; x; u) 2 intCi for all t 2 [0; � ] and all x 2 Ki. Hence S is also � -spanning for
(K̂; Q̂). Taking the minimum over all � -spanning sets S for (K̂;Q) and then the limit
for � !1, one �nds

hinv(K̂; Q̂) � hinv(K̂;Q):

The invariance entropy satis�es, cf. [13, Proposition 2.7],

hinv(K̂; Q̂) = max
i=1;:::;m

hinv(Ki; Q̂):

The proof is concluded by the observation that by relative invariance hinv(Ki; Q̂) =
hinv(Ki; Ci) for every i.

The following theorem shows that for �large�sets of initial values the invariance
entropy is determined by the relatively invariantW -control sets. A major assumption
will be that for every x 2 W there is a relatively invariant W -control set C with
C � clWOW;+(y) and there are only �nitely many relatively invariant W -control sets.
This property has been characterized in Theorem 4.4.

Theorem 5.2. Consider control system (2.1). Fix a world W and suppose for
the compact set Q := clW that W = intQ and W is connected. Let K � Q be compact
and assume that for every x 2 K there is a control u 2 U such that '(t; x; u) 2 intQ
for all t > 0. Suppose that there are only �nitely many relatively invariant W -control
sets Ci; i 2 f1; :::; ng and that for every x 2 K there is Ci � clWOW;+(x). Finally,
assume that the system is locally accessible on clCi for every i.

(i) For i = 1; :::; n let Ki be a compact subset of Ci with nonvoid interior. Then
the invariance entropy of (K;Q) satis�es

hinv(K;Q) � max
i=1;2;��� ;n

hinv(Ki; Ci):

(ii) Suppose that for every relatively invariant W -control set Ci the intersection
of K with Ci contains a compact subset Ki with nonvoid interior. Then

hinv(K;Q) = max
i=1;2;��� ;n

hinv(Ki; Ci):

where the maximum is taken over all relatively invariant W -control sets Ci.
Proof. Note that by Lemma 5.1(i) the invariance entropy hinv(Ki; Ci) is inde-

pendent of the choice of the compact subset Ki � Ci with nonvoid interior. First we
show the following claim:

There are � > 0, �nitely many controls wk 2 U ; k = 1; :::; N , and compact
subsets Ki � intCi with nonvoid interior such that for every x 2 K there is wk with
'(t; x; wk) 2W for all t 2 [0; � ] and '(�; x; wk) 2 Ki for some i.

For every x 2 K there is Ci � clWOW;+(x) and hence intCi � OW;+(x). Choose
compact sets K 0

i � intCi with nonempty interior. Then for every x 2 K there are
�x � 0 and ux 2 U with 'W (�x; x; ux) 2 intK 0

i for some i. By compactness of
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K and continuous dependence on initial values there are �nitely many �j > 0 and
uj 2 U such that for every x 2 K there is j with '(�j ; x; uj) 2 K 0

i for some i. Let
�max := maxj �j . For every y 2 K 0

i one �nds a control vy and a neighborhood N(y)
such that '(t; z; vy) 2 intCi for all t 2 [0; �max] and all z 2 N(y). Hence compactness
of K 0

i implies that there are �nitely many controls vj such that every z 2 K 0
i remains

in intCi up to time �max.
Together, we have shown that there are � := �max > 0 and �nitely many controls

wk; k = 1; :::; N , such that for every x 2 K there is a control wk such that '(t; x; wk) 2
W for all t 2 [0; � ] and '(�; x; wk) 2 intCi for some i. By �niteness of the number of
controls and compactness of K it follows that there are compact subsets Ki � intCi
with nonvoid interior such that for every x 2 K there is wk with '(�; x; wk) 2 Ki for
some i. This proves the claim.

(i) In view of Lemma 5.1(ii) it su¢ ces to show that

hinv(K;Q) � hinv(K̂;Q);

where K̂ :=
Sm
i=1Ki with compact sets Ki constructed in the claim.

Let S � U be a � 0-spanning set for (K̂;Q) with minimal cardinality rinv(�; K̂;Q).
The claim shows that there are � > 0, �nitely many controls wk 2 U ; k = 1; :::; N ,
such that for every x 2 K there is wk with '(t; x; wk) 2 W for all t 2 [0; �) and
'(�; x; wk) 2 Ki for some i. Then the concatenations of the controls in S with the N
controls wk are (� + � 0)-spanning for (K;Q). Hence their number N � rinv(�; K̂;Q) is
an upper bound for rinv(� + � 0;K;Q). Since N is independent of � 0, it follows that

hinv(K;Q) = lim sup
� 0!1

1

� 0
log rinv(�

0;K;Q) � hinv(K̂;Q):

(ii) Let Ki � K \Ci be compact with nonvoid interior. By relative invariance of
Ci one has

hinv(Ki; Ci) = hinv(Ki; Q) � hinv(K;Q):

Assertion (i) shows that also the converse inequality for the maximum holds.
Remark 5.3. For the invariance entropy of control sets, Kawan [12] and [13,

Chapter 5] has proved good upper bounds of the invariance entropy hinv(K;D) for
compact subsets K � D with nonvoid interior. These estimates are given in terms
of Floquet exponents for regular periodic solutions in the interior of the control set.
The proofs remain valid for W -control sets. Thus Theorem 5.2 will allow us to prove
similar estimates for more general situations by reducing them to estimates for W -
control sets, cf. Section 6 for an example.

6. Invariance entropy for a tank reactor. In this section we illustrate The-
orem 5.2 by an application to control of a continuous stirred tank reactor with Arrhe-
nius�dynamics, cf., e.g., Poore [17] or Golubitsky and Schae¤er [9]. We will brie�y
recall the results on the controllability structure given in Colonius and Kliemann [4,
Section 9.1] which are partially based on numerical evidence, and discuss W -invariant
control sets and an application of Theorem 5.2 for invariance entropy.

Consider the following model of a continuous stirred tank reactor given by�
_x1
_x2

�
=

�
�x1 � a(x1 � xc) +B�(1� x2)ex1
�x2 + �(1� x2)ex1

�
+ u(t)

�
xc � x1
0

�
= X0(x) + u(t)X1(x): (6.1)
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Here x1 is the (dimensionless) temperature; x2 is the product concentration; and
a; �; B, and xc are positive constants. The parameter xc is the coolant temperature,
and hence the control a¤ects the heat transfer coe¢ cient. Speci�cally, we take

a = 0:15; � = 0:05; B = 7:0; xc = 1:0; U
� = [��; �] with 0 < � � 0:15: (6.2)

Because of the physical constraints, we consider the system in the set [0;1)� [0; 1] �
R2. For each �xed u 2 U equation (6.1) has three �xed points. Let yi = �ezi=(1 +
�zi); i = 0; 1; 2, where z1 < z0 < z2 are the zeros of the transcendental equation

�z � (a+ u)(z � xc) +B�
�
1� �ez

1 + �ez

�
ez = 0:

Then these �xed points are given as two stable ones x1 = (z1; y1) and x2 = (z2; y2) and
a hyperbolic one x0 = (z0; y0), i.e., the linearization about x0 has one negative and
one positive eigenvalue. The phase portrait of the uncontrolled equation is indicated
in Figure 6.1.

The system satis�es the Lie algebra rank condition (ARC) at every point of the
forward invariant set (0;1) � (0; 1). The numerical computations indicate that for
the parameter values (6.2) the setM = [0; 7]� [0; 1] contains exactly three control sets
C�1 ; C

�
2 ; and D

� containing the �xed points xi(u); i = 1; 2; 0, for u 2 intU� = (��; �)
in their interior. The control sets C�1 and C

�
2 are invariant; the control set D

� is
variant, see Figure 6.1 for the situation with � = 0:15.

An interesting feature of this system is that the stable �xed point x2 with the
highest product concentration cannot be realized for technical reasons, hence it is of
interest to keep the system near the hyperbolic equilibrium x0.

The following result (given here in the notation from the present paper) is a
consequence of Colonius and Kliemann [4, Theorem 9.1.1]. We denote the reachable
set from y 2M with controls in U� by O�;+(y).

Theorem 6.1. Consider system (6.1), (6.2) with control range U� = [��; �]; 0 <
� � 0:15. Denote by M+(u) and M�(u) the stable and the unstable manifolds, re-
spectively, in M of the hyperbolic �xed point x0(u); u 2 [�0:15; 0:15]. Then the control
set D� is given by

intD� = int
[

u1;u22U�

(M+(u1) \M�(u2));

and the domain of attraction of D� de�ned as A(D�) := fy 2M j clO�;+(y)\D� 6= ?g
satis�es

A(D�) = int
[
u2U�

W+(u):

The boundary of A(D�) consists of the stable manifolds corresponding to u1 = ��
and u2 = �.

Figure 6.2 shows the set A(D0:15).
We will apply Theorem 5.2 to the system with controls in U�0 which have range

in U�0 = [��0; �0] and worlds W � := A(D�); � 2 (0; �0). The sets W � are open,
relatively compact and connected. For every � 2 (0; �0), the control set D� of the
�-system is contained in a relatively invariant W �-control set C�0(W �) of the system
with controls in U�0 : In fact, an analysis of the phase portraits near the hyperbolic
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Fig. 6.1. Phase portrait of the continuous �ow stirred tank reactor and control sets

Fig. 6.2. World W 0:15 of the continuous �ow stirred tank reactor

equilibria of the system with constant controls reveals that the sets D� can be left
by trajectories in W � with controls u 2 [��0;��) [ (�; �0]. Choose any initial point
x0 2 intD�. Let O�0;W�;+(x0) be the reachable set within W � with controls in U�0 .
Every point in this set can be steered back to D� without leaving W �. It follows that

C�0(W �) := D� [ O�0;W
�;+(x0)

is a relatively invariant W �-control set for the system with controls in U�0 .
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Theorem 5.2 implies that for every compact setK �W � intersecting the relatively
invariantW �-control set C�0(W �) in a set with nonvoid interior the invariance entropy
coincides with the invariance entropy for C�0(W �). Now the results in Kawan [13,
Chapter 5] can be applied for �0 > 0, small enough, to yield that the invariance entropy
of C�0(W �) satis�es for every compact subset K � C�0(W �) the following estimate:
Let �(u; x) be the positive Floquet exponent of any T -periodic trajectory '(�; x; u)
corresponding to a T -periodic control u 2 U�0 ; T > 0, with (x; u) 2 intC�0(W �) �
(��0; �0). Then

h�0inv(K;C
�0(W �)) � �(u; x):

In fact, Kawan [13, Propositions 5.9 and 5.12] show that for control-a¢ ne systems
the invariance entropy can be bounded above by the sum of the positive Floquet
exponents, provided that uniform hyperbolicity holds. Uniform hyperbolicity of the
control system restricted to C�0(W �) (more precisely, its corresponding control �ow)
can be veri�ed, since the equilibrium of the uncontrolled system is hyperbolic. Then
roughness of the Sacker-Sell spectrum (or the Morse spectrum, cf. e.g., Colonius
and Kliemann [4, Corollary 5.3.11]) implies that uniform hyperbolicity also holds for
�0 > 0 small enough.

7. Conclusions. This paper has studied W -control sets which are de�ned as
maximal subsets of complete approximate controllability within a safe region or world
W in the state space M . These generalizations of control sets (which are obtained
in the special case W = M) share many properties with control sets which are of
some interest for the analysis of the global behavior of control systems and random
dynamical systems.

We have also given an application to the recently introduced notion of invariance
entropy (or topological feedback entropy). For su¢ ciently large sets of initial values
the relatively invariant W -control sets determine the invariance entropy. This is
of particular interest, since for control sets D in M good upper estimates for the
invariance entropy are available, cf. Remark 5.3 and the example presented in Section
6.

The fact that invariance entropy is determined by the behavior of the system on
certain subsets of the state space is reminiscent of the classical fact that the topological
entropy of dynamical systems is determined by the restriction to the nonwandering
set; cf. Katok [11]. Hence, despite many di¤erences, this notion of invariance entropy
shares another property with topological entropy.
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